Power 3 Mean Labeling of Line Graphs

Sreeji.S ${ }^{1}$, S.S.Sandhya ${ }^{2}$
Author 1: Research Scholar
Sree Ayyappa College for Women, Chunkankadai.
Author 2 : Assistant Professor, Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai. [Affiliated to Manonmaniam Sundararanar University, Abishekapatti - Tirunelveli - 627012, Tamilnadu, India]

Abstract

: In this paper we contribute some new results on Power 3 mean labeling of graphs. We investigate on some standard graphs that accept Power 3 mean labeling and proved that the Line graphs of these Power 3 mean graphs are also Power 3 mean graphs. We proved that the Line graphs of Path, Cycle, Comb, $P_{n} \odot K_{1}, P_{n} \odot K_{1,2}$ are Power 3 mean graphs.

Key words: Graph, Power 3 mean graph, Line Graph, Path, Cycle, Comb, $P_{n} \odot K_{1}, P_{n} \odot K_{1,2}$.

AMS Subject Classification: 05C78

1.Introduction:

All graphs in this paprer are finite, simple, and undirected graph $G=(V, E)$ with p vertices and q edges. For all detailed survey of Graph labeling, we refer to J.A.Gallian [1]. For all other standard terminology and notations we follow Harary [2]. The concept of mean labelling has been introduced by S.Somasundaram and R.Ponraj [3] in 2004. S.Somasundaram and S.S.Sandhya introduced Harmonic mean labeling [4] in 2012. S.S.Sandhya, S.Sreeji introduced Power 3 mean labeling.

In this paper we investigate the Line graphs of some standard Power 3 mean graphs Path, Cycle, Comb, $P_{n} \odot K_{1,2}$. We will provide a brief summary of definitions and other information which are necessary for our present investigation.

A Path $\boldsymbol{P}_{\boldsymbol{n}}$ is a walk in which all the vertices are distinct. A Cycle $\boldsymbol{C}_{\boldsymbol{n}}$ is a Closed Path. The graph obtained by joining a single pendant edge to each vertex of a Path is called a Comb. A Complete Bipartite graph $K_{m, n}$ is a bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$ such that every vertex of V_{1} is joined to all the vertices of V_{2}, Where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=$ n. $P_{n} \odot K_{1,2}$ is a graph obtained by attaching each vertex of P_{n} to the central vertex of $K_{1,2}$.

Definition 1.1:

A graph G with p vertices and q edges is called a power 3 mean graph, if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1,2, \ldots \ldots, q+1$ in such a way that in each edge $e=u v$ is labelled with $f(e=u v)=$ $\left\lceil\left(\frac{x^{3}+y^{3}}{2}\right)^{\frac{1}{3}}\right\rceil$ or $\left\lfloor\left(\frac{x^{3}+y^{3}}{2}\right)^{\frac{1}{3}}\right\rfloor$. Then , the edge labels are distinct. In this case f is called Power 3 Mean labelling of G.

Remark: 1.2

If G is a Power 3 mean graph, then ' 1 ' must be a label of one of the vertices of G, since an edge should get label ' 1 '.

Remark: 1.3

If u gets label ' 1 ', then any edge incident with u must get label 1 (or) 2 (or) 3 . Hence this vertex must have a degree ≤ 3.

Definition 1.4:

Let $G=V, E$ be a non - trivial graph. Now each edge in E can be considered as a set of two elements of V. So E is a non - empty collection of distinct non empty subsets of V, such that their union is V. So there is a intersection graph $\Omega(E)$. Their graph $\Omega(E)$ is called the line graph of G and is dented by $L(G)$.

We observe that the vertices of $L(G)$ are the edges of G. Further two vertices of $L(G)$ are adjacent iff their corresponding edges are adjacent in G. Thus the vertices a, b in $L(G)$ are adjacent iff $a=u v$ and $b=v w$ are in G.

Theorem 1.5: Any Path P_{n} is a Power 3 mean graph.
Theorem 1.6: Any Cycle $C_{n}, n \geq 3$ is a Power 3 mean graph.
Theorem 1.7: Any Comb $P_{n} \odot K_{1}$ is a Power 3 mean graph.
Theorem 1.8: $P_{n} \odot K_{1,2}$ is a Power 3 mean graph.
Remark : 1.9 Line graph of path P_{n} is a Power 3 mean graph.
Remark : 1.10 Line graph of Cycle C_{n} is a Power 3 mean graph
Remark : 1.11 In Path and Cycle, Graph G and Line graph $L(G)$ are isomorphic to each other.

2. Main Results:

Theorem 2.1:

The line graph of $K_{1,3}$ is a Power 3 mean graph

Proof:

The graph $K_{1,3}$ is displayed below.

Figure : 1
The Line graph of $K_{1,3}$ is displayed below.

Figure : 2

Theorem 2.2:

Line graph of Comb $P_{n} \odot K_{1}$ is a Power 3 mean graph.

Proof:

Let G be a graph obtained from a Path $P_{n}=u_{1} u_{2} \ldots \ldots u_{n}$ by joining the vertex u_{i} to $v_{i} ; 1 \leq i \leq n$.
Graph G of Comb $P_{5} \odot K_{1}$ is displayed below.

Figure: 3
Let e_{i} be the vertices of $L(G)$. The Line graph $L(G)$ Comb $P_{5} \odot K_{1}$ is shown in figure : 9

Figure : 4
In general, the Line graph $L(G)$ of $\operatorname{Comb} P_{n} \odot K_{1}$ is shown in figure : 10

Figure : 5
Let u_{i}, v_{i} be the vertices of Line graph $L(G)$.

Define a function $f(G) \rightarrow\{1,2, \ldots \ldots, q+1\}$ by,
$f\left(u_{1}\right)=1 ; f\left(u_{2}\right)=2 ; f\left(u_{i}\right)=3 i-2 ; 3 \leq i \leq n-1$
$f\left(u_{n}\right)=f\left(u_{n-1}\right)+2 ; f\left(v_{i}\right)=3 i ; 1 \leq i \leq n$
Edges are labeled with, $f\left(u_{1} u_{2}\right)=1 ; f\left(u_{i} u_{i+1}\right)=3 i-3 ; 2 \leq i \leq n-2$
$f\left(u_{n-1} u_{n}\right)=f\left(u_{n-1}\right) ; f\left(v_{i} u_{i+1}\right)=3 i-1 ; 1 \leq i \leq n-3 ; f\left(v_{i} u_{i+2}\right)=3 i+1$
Hence $L(G)$ of Comb $P_{n} \odot K_{1}$ is a Power 3 mean graph.
Example : 2.3 Power 3 mean labeling of Line graph of Comb $P_{5} \odot K_{1}$ is shown below.

Theorem 2.4:
Line graph of $P_{n} \odot K_{1,2}$ is a Power 3 mean graph.

Proof:

Graph G of $P_{4} \odot K_{1,2}$ is displayed below.

Figure : 7
The Line graph $L(G)$ of $P_{4} \odot K_{1,2}$ is shown in figure : 13

Figure : 8

In general, The Line graph of $P_{4} \odot K_{1,2}$ is shown in figure : 14

Figure: 9
Let $L(G)$ be the line graph of $P_{n} \odot K_{1,2}$ and u_{i}, v_{i}, w_{i} be the vertices of $L(G)$.
Define a function $f: V(G) \rightarrow\{1,2, \ldots \ldots, q+1\}$ by
$f\left(u_{1}\right)=1 ; f\left(u_{i}\right)=6 i-9 ; 2 \leq i \leq n-1 ;$
$f\left(u_{n}\right)=f\left(u_{n-1}\right)+4$
$f\left(v_{1}\right)=2 ;$
$f\left(v_{i}\right)=6 i-7 ; 2 \leq i \leq n-1 ;$
$f\left(w_{i}\right)=6 i+1 ; 1 \leq i \leq n-3$
Edges are labeled with, $f\left(u_{1} u_{2}\right)=2$;
$f\left(u_{i} u_{i+1}\right)=6 i-5 ; 2 \leq i \leq n-2$
$f\left(u_{n-1} u_{n}\right)=f\left(u_{n-1}\right)+2 ;$
$f\left(u_{1} v_{1}\right)=1 ;$
$f\left(u_{i} v_{i}\right)=6 i-8 ;$
$f\left(v_{1} u_{2}\right)=3 ;$
$f\left(v_{2} u_{3}\right)=8$
$f\left(v_{i} u_{i+1}\right)=6 i-4 ; 3 \leq i \leq n-2 ;$
$f\left(v_{n} u_{n+1}\right)=f\left(v_{n}\right)+1 ;$
$f\left(w_{i} u_{i+1}\right)=6 i-1 ; 1 \leq i \leq n-3$
$f\left(w_{i} u_{i+1}\right)=6 i ; 1 \leq i \leq n-3 ;$
$f\left(w_{i} u_{i+2}\right)=6 i+3 ; 1 \leq i \leq n-3$
Thus, f admits Power 3 mean labeling of G. Hence $L(G)$ of $P_{n} \odot K_{1,2}$ is a Power 3 mean graph.
Example : 2.5 Power 3 mean labeling of Line graph $P_{4} \odot K_{1,2}$ is shown below.

Figure : 10

Theorem 2.9:

Line graph of $K_{3} \odot K_{1}$ is a Power 3 mean graph.

Proof:

The graph of $K_{3} \odot K_{1}$ is shown below.

Figure : 11
The Line graph of $L\left(K_{3} \odot K_{1}\right)$ is shown below.

Figure : 12
In the above figure, the vertices and edges are get distinct labels.
Hence Line graph of $K_{3} \odot K_{1}$ is a Power 3 mean graph.

3.Conclusion:

The study of Power 3 mean labelling of Line graphs is important due to its diversified applications. Line graphs of all Power 3 Mean Graphs are not Power 3 Mean Graphs. It is very interesting to investigate graphs which admits Power 3 Mean Labeling. In this Paper, We proved that Line Graph of Path, Cycle, Comb, Star, $P_{n} \odot K_{1,2}$ are Power 3 Mean Graphs. The derived results are demonstrated by means of sufficient illustrations which provide better understanding. It is possible to investigate similar results for several other graphs.

4. Acknowledgement:

The authors are thankful to the referee for their valuable comments and suggestions.

References:

[1] Harary.F (1988), Graph Theory, Narosa publishing House, New Delhi.
[2] J.A.Gallian, A Dynamic Survey of Graph Labeling. The Electronic Journal of combinatorics(2013).
[3] S.Somasundaram and R.Ponraj, "Mean Labeling of graphs", National Academy of Science Letters vol.26, p.210213.
[4] S.Somasundaram, R.Ponraj and S.S.Sandhya, "Harmonic Mean Labeling of Graphs", communicated to Journal of Combinatorial Mathematics and Combinatorial Computing.
[5] S.Sreeji, Dr.S.S.Sandhya, "Power 3 Mean Labeling of Graphs", International Journal of Mathematical Analysis, ISSN NO: 1314-7579 Vol.14, 2020, no. 2, 51-59.

